
A-Level Chemistry Summer Bridging Work 2023/24

Exam board: OCR

Resources that you need to purchase in preparation for studying this course:

- Course Textbook: "A Level Chemistry for OCR A Student Book (OCR A Level Sciences) by Rob Ritchie and Dave Gent
- Lever arch folder
- Dividers

Vocabulary

Each of the definitions below is for a common word or term used in chemistry. Identify the correct word or term to go with each definition and write it in the space provided.

Definition	Word/Term
The smallest particle of an element	
Positive nuclei held together by delocalised electrons	
Different physical structures of atoms of the same element	
The change in concentration of a reactant or product over time	
Chemically combined elements in a fixed ratio	
Able to dissolve in a particular solvent	
Breaking a substance apart using an electrical current	
A reaction in which a substance is burned in oxygen	
A substance able to speed up a chemical reaction that remains unchanged after the reaction is complete	
A bond formed by the sharing of a pair of electrons	
Negatively charged particle found within atoms	
The loss of electrons	
The reaction between an acid and a base to produce water and a solution of pH 7	

Atomic Structure

Every substance around you is made from atoms. But what is an atom and what does an atom contain?

In the space below produce a drawing that shows what makes up an atom. You should label your diagram fully and give explanations where necessary.

Once you are happy that you have included everything, compare it with the completed diagram in the Answers to check you have all the essential points.

Chemical Equations and Reactions

Chemists tell the story of reactions by using equations. These can be word equations, which give the names of chemicals, but most often they use formulae equations. You are going to study a series of equations and interpret the information they can tell you.

Task 1

Write word equations for each of the following formulae equations:

- 1 HCI + NaOH → NaCI + H₂O
- 2 Mg + 2HCl → MgCl₂ + H₂
- 3 CH₄ + 2O₂ → CO₂ + 2H₂O
- 4 $H_2 + I_2 \rightarrow 2HI$
- 5 2Ca + O₂ → 2CaO

Task 2

Choosing from displacement, thermal decomposition, neutralisation, polymerisation or combustion, identify which type of reaction is occurring for each of the following formulae equations:

- 1 $H_2SO_{4 (aq)} + 2NaOH_{(aq)} \rightarrow Na_2SO_{4 (aq)} + 2H_2O_{(aq)}$
- $\mathbf{2} \qquad \text{CuCO}_{3 \text{ (s)}} \rightarrow \text{CuO}_{\text{ (s)}} + \text{CO}_{2 \text{ (g)}}$
- 3 $Mg_{(s)} + CuSO_{4(aq)} \rightarrow MgSO_{4(aq)} + Cu_{(s)}$
- 4 $CH_{4(q)} + 2O_{2(q)} \rightarrow CO_{2(q)} + 2H_{2}O_{(q)}$
- 5 $nC_2H_4 \rightarrow [C_2H_4]_n$

Task 3

Balance the following equations:

- HCl + Mg → MgCl₂ + H₂
- 2 Li + $H_2O \rightarrow LiOH + H_2$
- 3 $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
- 4 $K + H_2SO_4 \rightarrow K_2SO_4 + H_2$
- 5 $C_7H_{16} + O_9 \rightarrow CO_9 + H_9O$

Chemical Bonding

Atoms can join together to form molecules of elements and chemical compounds. They do this by using bonds. Complete the following table on the different types of bonding.

Type of bonding	Ionic	Covalent	Metallic
Example of substance with this bonding	NaCl	Cl_2	Fe
Diagram of the bonding within this substance (ensure you accurately represent any outer electrons)			
What happened to the electrons to form this type of bond?			
Would a substance with this type of bond conduct electricity?			
Does a substance with this type of bond contain charged particles?			

Endothermic and Exothermic Reactions

All chemical reactions involve bonds being broken and bonds being formed. Every time a bond is broken or formed, energy is either required or released by the reaction. These energy transfers that occur during reactions cause temperature changes. The amount of energy required or released depends on the bond being broken or formed.

Methane, CH₄, reacts with oxygen in the following way:

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_{2}O_{(g)}$$

Average bond enthalpies (kJ mol ⁻¹)								
С-Н	0=0	C=O	H-O					
412	496	743	463					

- **1** Use the average bond enthalpies provided to calculate the energy change for this reaction. Show all your workings.
- 2 Would this energy change be endothermic or exothermic?
- **3** What would happen to the temperature during this reaction?
- 4 Sketch an 'energy level diagram' to represent this reaction.

Mini Quiz

b) 62c) 63

You will need a periodic table and a calculator for this quiz.

The atomic number tells you the number of: a) electrons b) protons c) neutrons 2 An ion is a particle containing: a) a different number of neutrons b) an even number of electrons c) a charge The nucleus contains: 3 a) protons and neutrons b) protons and electrons c) neutrons only The number of electrons found in an element's outer shell is the same as its: 4 a) atomic number b) group number in the periodic table c) row in the periodic table A bond involving a shared pair of electrons is called: 5 a) covalent b) ionic c) metallic Metals will bond with non-metals using: a) metallic bonding b) covalent bonding c) ionic bonding The relative formula mass of nitric acid, HNO₃, is: a) 61

8	The formula for magnesium chloride is:
	a) MgCl
	b) Mg ₂ Cl c) MgCl ₂
9	In ionic equations, aluminium ions would be written as:
	a) Al ²⁺ b) Al ³⁺
	c) Al ⁴⁺
10	During an endothermic reaction the temperature:
	a) decreases
	b) increases c) stays constant
11	The formula for limestone is:
	a) CaO b) CaCO ₃
	c) Ca(OH) ₂
12	In terms of crude oil fractions, what effect will a longer carbon chain have on the boiling point?
	a) increase the boiling point
	b) decrease the boiling point c) have no effect
	of Have no onoce
13	As you move down group 7 from fluorine to iodine, the reactivity:
	a) decreases
	b) increases c) stays the same
14	An alkali is a type of base that is:
	a) insoluble in water
	b) soluble in water c) produces solutions above pH 10
15	
15	A catalyst increases the rate of reaction by:
	a) providing energy b) blocking reversible reactions
	c) lowering the activation energy

The Periodic Table of Elements

						_							
0	4 He helium 2	20 Ne	10	4 4	argon 18	8 2	kypton 36	131 x	xenon 54	[222] Rn	radon 86	[294] Og	oganesson 118
7		€ ≖	fluorine 9	35.5 CI	chlorine 17	86	bromine 35	127 I	iodine 53	[210] At	astatine 85	[294] Ts	117
9		9 o	oxygen 8	32 8	sulfur 16	62	selenium 34	128 Te	tellurium 52	[209]	polonium 84	[293] Lv	livermorium 116
2		₹ Z	nitrogen 7	31 P	phosphorus 15	75	As arsenic 33	122 Sb	antimony 51	209 Bi	bismuth 83	[289] Mc	moscovium 115
4		C 2	carbon 6	28 S i	14 14	73	Ge germanium 32	119 Sn	20 ttu	207 Pb	lead 82	[289] FI	flerovium 114
က		≃ ∞	5	27 Al	aluminium 13	0.0	gallium 331	115 n	molinu 49	204 TI	thallium 81	[286] Nh	nihonium 113
						65	8 gg 2	112 Cd	cadmium 48	201 Hg	mercury 80	[285] Cn	copernicium 112
						63.5	opper 29	108 Ag	silver 47	197 Au	gold 79	[272] Rg	roentgenium 111
						29	Z Sel	106 Pd	palladium 46	195 Pt	platinum 78	[271] Ds	damstadfum 110
						29	oobalt 24	103 Rh	modium 45	192 Ir	Indium 77	[268] Mt	meitnerium 109
	L H hydrogen					56	16 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2	ruthenium 44	190 Os		l	
		_		1		55	Min manganese 25	[98] Tc	technetium 43	186 Re	menium 75	[264] Bh	107
		c mass	atomic (proton) number			52	E	96 W	molybdenum 42	184 X	tungsten 74	[266] Sg	seaborgium 106
	Кеу	relative atomic mass atomic symbol	(proton)			51	vanadium 23	93 N	_	181 Ta	tantalum 73	[262] Db	
		relativ ato	atomic			8 i	titanium 22	91 Zr	zirconlum 40	178 Hf	hafnlum 72	[261] Rf	104
						45	scandium 21	8° ≻	yttrium 39	139 La *	lanthanum 57	[227] Ac *	actinium 89
7		ල මූ	beryllium 4	24 Mg	magnesium 12	9.6	calcium 20	88 %	strontium 38	137 Ba	barlum 56	[226] Ra	adlum 88
-		7 Li	lithium 3	23 Na		33	potassium 19	85 Rb	nubidium 37	133 Cs	caesium 55	[223] Fr	francium 87

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted.

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.