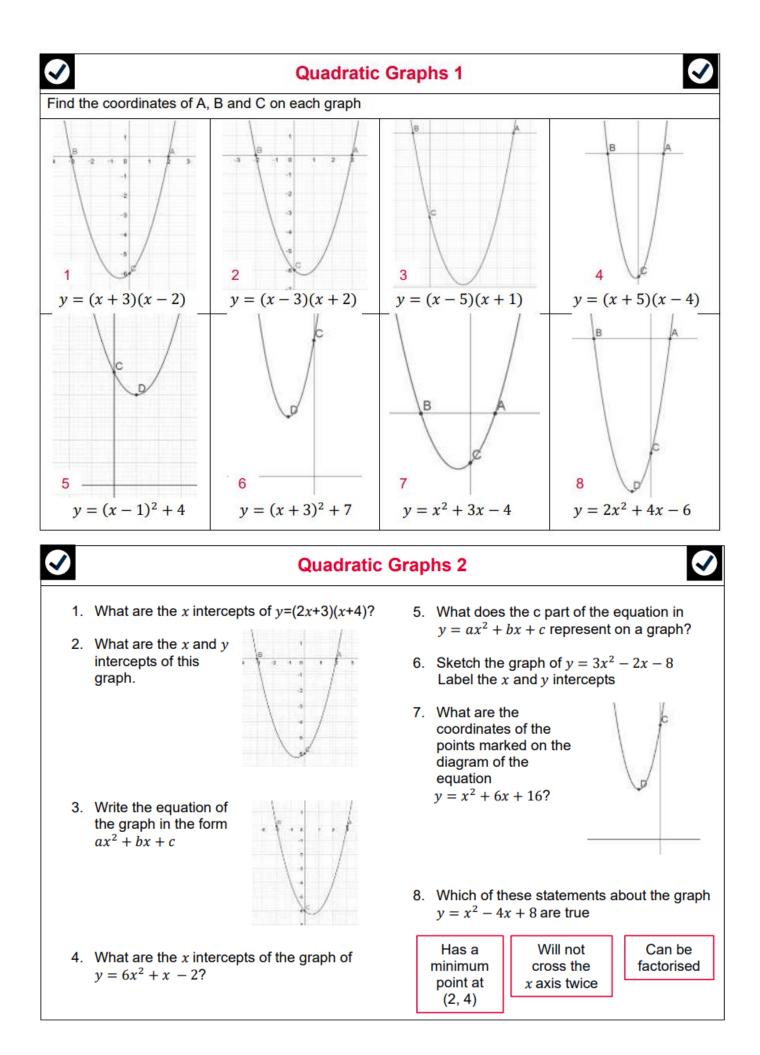

GCSE to A-Level bridging pack

Section 1: Sketching

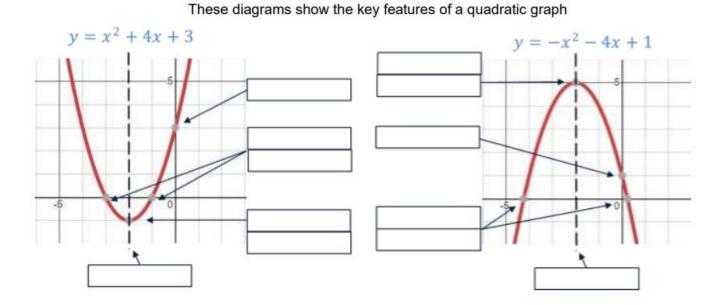


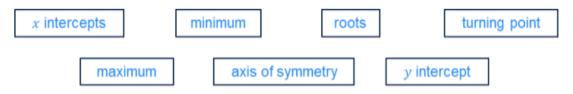
Sketching Linear Inequalities

Sketch and shade the following inequalities.

1 . $y \le 6$	2 . $x < 6$	$3. x + 2y \ge 8$	$4. 3x + 2y \ge 12$
----------------------	--------------------	--------------------	----------------------

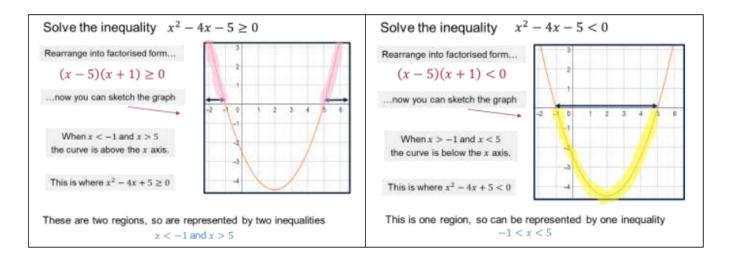
- Shade out the side of the line that doesn't satisfy the inequality.
- Label the correct region R



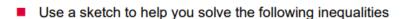


What is a sketch?

In mathematics a sketch does not need to be a completely accurate drawing, but it should "illustrate all the significant features of the graph/shape"



Put the words below into the boxes above so that the quadratic graphs are labelled correctly. Some words may be used more than once.



Quadratic Inequalities

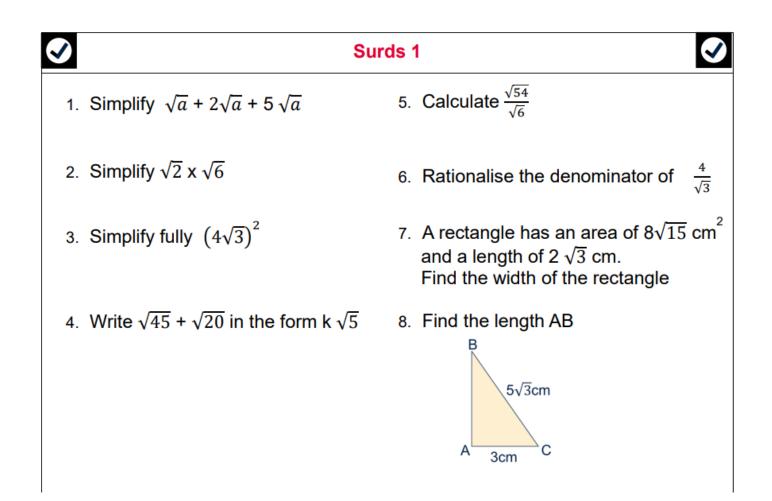
1. (x-2)(x+3) < 0

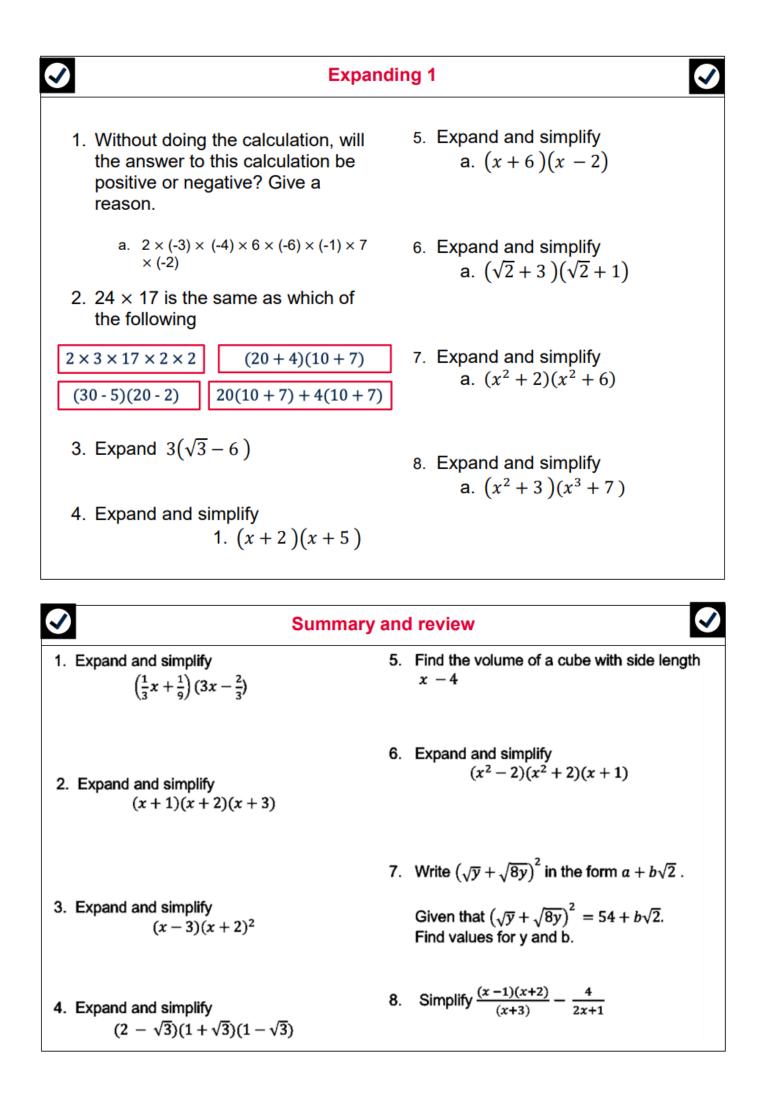
- 3. $x^2 + 7x + 12 \ge 0$
- 2. (4+x)(2-x) < 04. $36 \ge (x+2)^2$

Sketching Other Graphs 1

- 1. What is the mathematical name for the graph of $y = \frac{1}{x}$?
- 2. What are the maximum and minimum values for the graph $y = cos\theta$?
- 3. Sketch the graph of $y = 2^x$. Label the *y* and *x* intercepts.
- 4. Using a sketch of the graphs $y = \frac{1}{x}$ and y = x

Show how many solutions there will be to the equation $\frac{1}{x} = x$


- 5. What is the name for this type of graph?
- 6. What is the *y* intercept of the graph y = (x + 2)(x 3)(x + 5)?
- 7. What are the *x* intercepts of the graph y = (x + 2)(x 3)(x + 5)?
- 8. Sketch the graph of y = (x - 3)(x + 2)(x + 5)


Section 2: Simplifying

Fraction	ons 1
1. What is the value of $\frac{2006}{8} + \frac{6002}{8}$	5. What is the value of
 2. There are 84 animals in a field 11 are cows 45 are sheep The rest are pigs What fraction of the animals are pigs? Give you answer in simplest form 	6. How many of these calculations equal 1 Give reasons $\frac{1}{2} + \frac{1}{2} \qquad \frac{1}{2} - \frac{1}{2} \qquad \frac{1}{2} \times \frac{1}{2} \qquad \frac{1}{2} \div \frac{1}{2}$
3. Simplify fully $\frac{x}{6} + \frac{3x}{4}$	7. Sally has 30m of ribbon. She cuts lengths of $2\frac{3}{5}$ metres from the ribbon. Sally says she has enough ribbon to cut 12 lengths. Is she correct? You must show all workings
4. Calculate $\frac{5}{6} \times \frac{3}{5}$	8. Express as a single fraction $\frac{2a}{3} - \frac{b}{4}$
give your answer in simplest form	
	es 2
Simplify the following	
1. $t^5 \times t^4 =$	5. $(8)^{\frac{1}{3}} =$
2. $\frac{8^7}{8^2} =$	6. $y^0 =$
3. $(3^4)^2 =$	7. What is $4^{-3} =$
4. $\frac{5^7 \times 5}{(5^3)^3} =$	8. What is $\left(\frac{2}{3}\right)^{-2} =$

Section 3: Expanding

Expanding 2		
1. Expand y(2y – 3)	5. Multiply the expressions y and y + 4 Which of these expressions show the result?	
2. Expand 2x ² (3xy – 2x ³)	5y $y(y+4)$ y^2+4y $4y+4$	
3. Expand and simplify a. $5(x - 4) + 3(2x + 5)$	6. A rectangle of width 3cm and width x + 4 cm is made larger by doubling its side lengths. What is the area, in cm ² of the larger rectangle?	
4. Expand and simplify	7. Expand and simplify $4 - 3(2 - a + t) - t$	
a. $4(\sqrt{2}-3)+2(\sqrt{2}+2)$	8. Expand and simplify $\frac{a}{2}\left(3+\frac{a}{4}\right) + \frac{a}{3}\left(2+\frac{a}{2}\right)$	

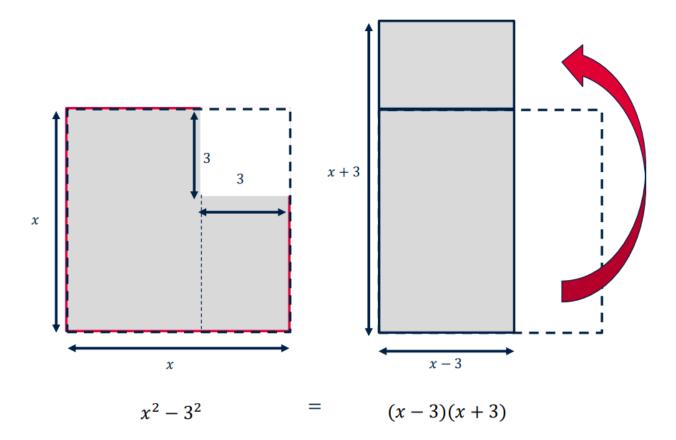
Section 4: Factorising

	Factorising 1	J
Fully factorise the following:		
1. $5x - 30$	5. $7a^2b + 21ab - 14a$	
2. $9x + 6$	6. $12x^2 + 12xy + 12y^2$	
3. $x^2 + 6x$	7. $3t(t-1) + 7(t-1)$	
4. $6y^3 - 12y$	8. $2x(x^2+3) - 5(x^2+3)$	

Further Factorising 2

Factorise the following fully:

 \checkmark


- 5. $k^2 + 9k + 20$ 1. $x^2 + 6x - 7$ 6. $x^2 + x - 56$ 2. $y^2 + y - 12$ 3. $y^2 - 11y + 28$ 7. $p^2 - 25p$ 4. $t^2 + 7t - 18$
- - 8. $x^2(3x-4) + (4-3x)$

Difference of Two Squares

A special case for factorising is the difference of two squares. Expressions such as $x^2 - 3^2$, where the coefficient of *x* is zero.

Try factorising these expressions using the difference of two squares

- 1. $x^2 6^2$
- **2**. $y^2 144$
- 3. $x^2 y^2$
- 4. $4t^2 81$
- 5. $x^2 5$

Trickier Quadratics

- 1. $3x^2 10x 8$
- **2.** $2x^2 7x + 6$
- **3.** $4y^2 + 20y + 9$
- 4. $6x^2 13x 8$
- 5. $20x^2 + x 12$

✓ C	ompleting the square 1	\checkmark
Write these expressions in the form	$1 (x+a)^2 + b$	
1. $x^2 + 4x$	5. $x^2 - 12x + 41$	
2. $x^2 + 4x + 5$	6. $k^2 + 10k - 2$	
3. $y^2 - 8y$	7. $y^2 + 3y + 1$	
4. $y^2 - 8y + 7$	8. $p^2 - 2p + 1$	

Section 5: Rearranging

Rearranging 1

- 1. Solve 3x + 25 = 60
- 2. Rearrange z = w + 3 to make w the subject
- 3. Rearrange 5x 4 = 2y to make *x* the subject
- 4. Rearrange $y = \frac{t}{6}$ to make t the subject

- 5. $y = 6p^2 + 2$ rearrange to make *p* the subject
- 6. The area of a circle is found using $A = \pi r^2$ Write the equation you would use to find the radius.
- 7. In a right angled triangle $sinx = \frac{Opp}{Hyp}$ write down the equation for finding the opposite side.
- 8. To change temperatures in Celsius to Fahrenheit this formula is used.

$$F = \frac{9}{5}C + 32$$

Rearrange to give the formula for converting Celsius to Fahrenheit

 \mathbf{X}

Rearranging and Functions

Original function	
f(x) = 3x + 2	

Find the inverse of each of these functions.

1. f(x) = 3x - 5

$$f(x) = 4x + 7$$

- 3. $f(x) = \frac{x}{2} + 1$
- $f(x) = \frac{x+2}{3}$

Inverse function
$$f^{-1}(x) = \frac{x-2}{3}$$

5.
$$f(x) = \frac{2}{3}x + 3$$

$$6. \qquad f(x) = 3 - 2x$$

Instead of reversing a function machine - try re-arranging the original function to make x the subject

Further Factorising 2

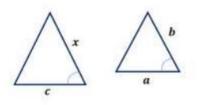
- 1. Make y the subject of xy + 6 = 7 - ky
- 2. Find an expression for the area of a rectangle with length, (y - x) and width, (x - 2)
- 3. Rewrite your expression in Q2 to have y expressed in terms of A and x
- 4. Make y the subject of $\frac{4}{y} + 1 = 2x$

5. Displacement can be expressed as i. $s = ut + \frac{1}{2}at^2$

Express a in terms of s, u and t

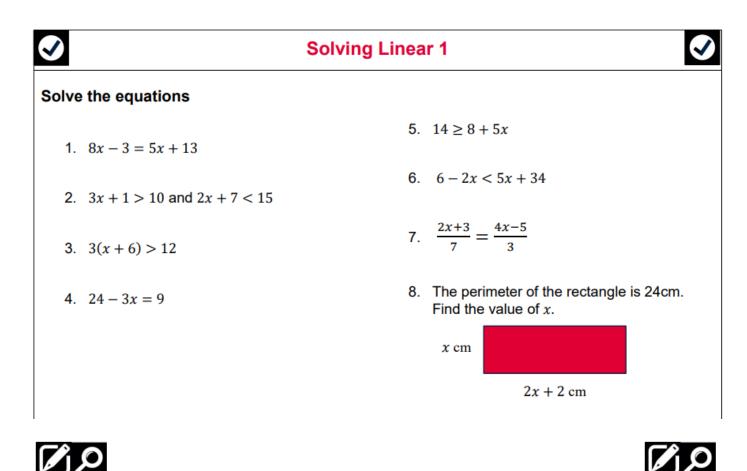
- 6. Make y the subject of $\sqrt{by^2 x} = D$
- 7. The area of a trapezium has formula i. $A = \frac{1}{2} \left(\frac{a+b}{h} \right)$ Express h in terms of A, a and b
- 8. Make t the subject b(t + a) = x(t + b)

Fractions 1


1. Rewrite the formula to make time the subject

 $Speed = \frac{distance}{time}$

 $\frac{x}{v} = \frac{a}{b}$


3. Make x the subject of
$$tan\theta = \frac{y}{r}$$

4. These triangles are similar. Show that $x = \frac{cb}{a}$

- 5. Make x the subject of $x = \frac{h+k}{a}$
- 2. Rearrange to make *a* the subject 6. Make *x* the subject of $x + a = \frac{x+b}{c}$
 - 7. Make *a* the subject of $\frac{1-a}{1+a} = \frac{x}{y}$
 - 8. Make *y* the subject of $y(\sqrt{3} + \sqrt{2}) = x$ And write in the form $y = x(\sqrt{a} + \sqrt{b})$

Linear Simultaneous Equations

Elimination 3x + 2y = 95x - 2y = -1

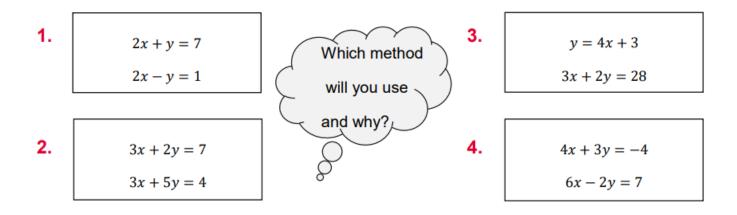
Add the two equations together to eliminate y

$$8x = 8$$

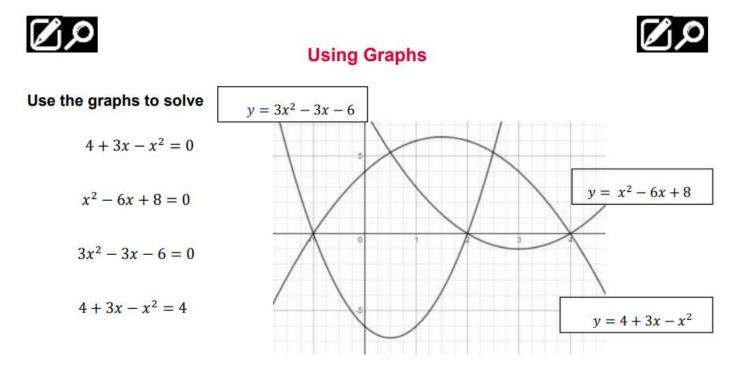
x = 1

Now we have a value for x we can put it into one of the original equations to find y

$$3 \times 1 + 2y = 9$$
$$3 + 2y = 9$$
$$2y = 6$$
$$y = 3$$


Substitution y + 3x = 5 2y + 7x = 11Rearrange the first equation in terms of y and then substitute into the second equation 2(5 - 3x) + 7x = 11 10 - 6x + 7x = 11 x = 1Now we have a value for x we can put it into one of the original equations to find y $y + 3 \times 1 = 5$

$$y + 3 = 5$$


$$y = 2$$

Which method is best and when?

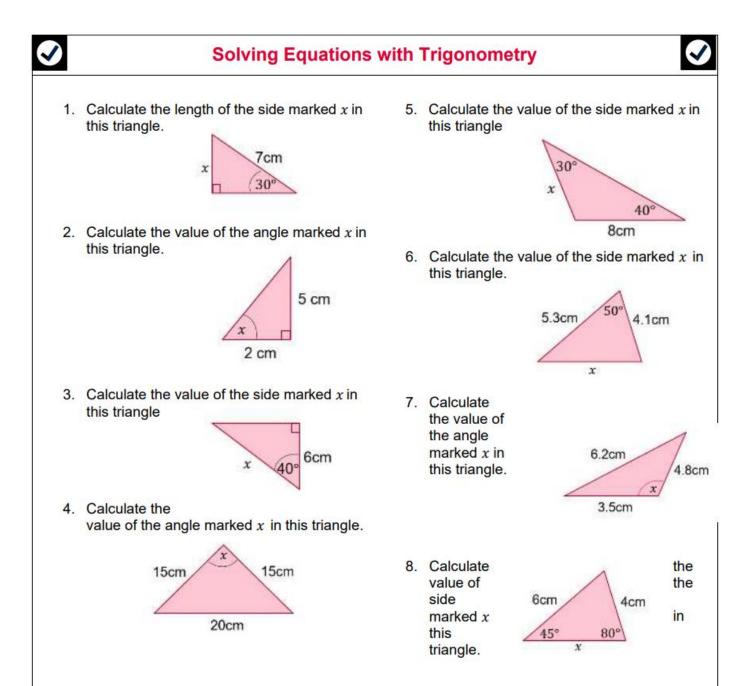
Solve the following:

✓	Solving with Quadratics 1	•
Solve the following		
1. $x^2 = 16$	5. $(2x-5)(4x+3) = 0$	
2. $x^2 - 16x = 0$	6. $3x^2 + 14x - 5 = 0$	
3. $(x+1)(2x-3) = 0$	7. $(x+3)^2 = 25$	
4. $x^2 - 3x + 2 = 0$	$\frac{3}{x} + \frac{4}{x-1} = 10$	

Simultaneously

Solve these pairs of equations

1. $y = x^2 + 6x - 9$ **2**. $y = x^2 + 2x + 2$ **3**. A rectangle has length (a + b) and width 3a.


$$y = 3x + 1 \qquad \qquad y - 4x = 1$$

The area is $60cm^2$ and perimeter is 32 cm.

Calculate, algebraically, the values of a and b.

4. In how many places does the line y = 2x + 2 intersect the circle $(x + 2)^2 + y^2 = 25$?

What are the co-ordinates of these intersections?

